
1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

A: Vowel Frequencies
Time Limit: 2 sec

The English alphabet consists of 26 letters. Five of these (a, e, i, o and u) are classified as
vowels, the remaining 21 as consonants. Almost every English word contains at least one vowel
(“rhythm” is one of the few exceptions).

In this problem you will be given a number of pieces of English text. Your task is to determine
the frequency of each vowel that is found in the piece, and to display the answers sorted by
frequency, highest frequency first. Where two vowels are equally frequent, they are to be dis-
played in alphabetical order.

As you can see from the examples below, upper case and lower case letters are considered to be
the same letter in this problem. Use lower case in your output. As you can see from the second
example, a frequency of zero must still be displayed.

Input

Each piece of text to be analysed is on a separate line of the input file. Each line has at most
200 characters. A single # on a line indicates the end of input.

Output

Output for a problem must be on a single line. Each vowel must be output in lower case,
followed by a colon, followed by the frequency of that vowel. There must be one space before
the next letter, and a dot at the end.

Sample Input

This piece of text was written in the city of Auckland.

ACM Programming Contest.

#

Sample Output

e:5 i:5 a:3 o:2 u:1.

a:2 o:2 e:1 i:1 u:0.

Problem A: Page 1 of 1

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

B: Jelly
Time Limit: 2 sec

A local school provides jelly for their pupils every day, and the school sta↵ are very careful to
see that each child has exactly the same amount.

The jelly is prepared the previous day; the liquid jelly is poured into rectangular sided moulds,
one mould per child, and then put in the fridge where it sets. The moulds may di↵er by the
length and width of their sides but are filled to di↵erent heights so that they all have the same
volume; length, width, and height are always integer numbers.

Unfortunately, one of the cleaners loves practical jokes! Whenever he can, before the jelly has
set, he tips liquid jelly from one of the moulds into another. He is happy if he succeeds just
once and doesnt repeat the joke with other moulds.

Your task is to help the school sta↵ by preparing a report for them. They need to know who
has lost jelly and who has gained it so that they can correct matters before the children arrive.

Input

The input consists of one or more scenarios. Each scenario begins with a single integer n, 1 
n  100, representing the number of children for whom jelly was prepared. Following this are
n lines, each line representing one child. The data for a child consists of the child’s name and
3 integer numbers in the range 1 to 100, respectively representing the length, width and height
of the jelly in that child’s mould, all separated by single spaces. A child’s name consists of a
sequence of 1 up to 10 letters (upper and/or lower case), and no two children have the same
name. A single 0 on a line by itself marks the end of input.

Output

Your report consists of one line of text per scenario. If the cleaner did not manage to transfer
any jelly before it set, your report must say

No child has lost jelly.

If the cleaner did manage to transfer jelly, your report must be of the form

ChildA has lost jelly to ChildB.

where ChildA is the actual name of the child that has lost jelly and ChildB is the actual name
of the child that has gained jelly.

Sample Input

3

Joe 10 10 2

Susan 10 5 4

Bill 5 5 8

4

Problem B: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Zoe 10 2 2

Lee 6 5 2

Alan 5 4 4

Tommy 12 5 1

0

Sample Output

No child has lost jelly.

Zoe has lost jelly to Alan.

Problem B: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

C: House Numbering
Time Limit: 2 sec

The government of Acmonia has decided that henceforth all house numbers should be given
in binary instead of decimal notation. Householders will now have to purchase 0 and 1 binary
digits to display on their houses. For reasons much too complicated to discuss here it seems
that the cost to a householder of a 0 binary digit and of a 1 binary digit may well di↵er. Your
task is to write a program which will report to householders the cost of their new numbers.

Input

The input text consists of a number of sets of problems. The first line of a set is of the form
“COST a b”. For that set:

• a and b are both integers, 0  a, b  1000

• a 0 binary digit costs a dollars

• a 1 binary digit costs b dollars

The first line is followed by one or more lines each consisting of a single integer n

• 0  n  2 000 000

• n indicates a house number, expressed as a standard decimal number

A single # on a line indicates the end of input.

Output

Each set of output data must begin with a single output line showing consisting of the word
“Set”, followed by a space and the current set number (counted from 1). This is followed by the
cost of the binary digits for each house number, each cost being displayed as a decimal number
on a separate line.

Sample Input

COST 1 1

1

34

15

COST 1 10

1

34

15

COST 10 1

1

34

15

COST 0 5

1

16

#

Problem C: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Output

Set 1

1

6

4

Set 2

10

24

40

Set 3

1

42

4

Set 4

5

5

Problem C: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

D: Prime Digital Roots
Time Limit: 2 sec

The digital root of a number is found by adding together the digits that make up the number. If
the resulting number has more than one digit, the process is repeated until a single digit remains.

Your task in this problem is to calculate a variation on the digital root - a prime digital root.
The addition process described above stops when there is only one digit left, but will also stop
if the original number, or any of the intermediate numbers (formed by addition) are prime
numbers. If the process continues and results in a single digit that is not a prime number, then
the original number has no prime digital root.

An integer greater than one is called a prime number if its only positive divisors (factors) are
one and itself.

• For example, the first six primes are 2, 3, 5, 7, 11, and 13.

• Number 6 has four positive divisors: 6, 3, 2, and 1. Thus number 6 is not a prime.

• Caveat: number 1 is not a prime.

EXAMPLE OF PRIME DIGITAL ROOTS

1 This is not a prime number, so 1 has no prime digital root.
3 This is a prime number, so the prime digital root of 3 is 3.
4 This not a prime number, so 4 has no prime digital root.
11 This is a prime number, so the prime digital root of 11 is 11.
642 This is not a prime number, so adding its digits gives 6 + 4 + 2 = 12. This is not

a prime number, so adding again gives 1 + 2 = 3. This is a prime number, so the
prime digital root of 642 is 3.

128 This is not a prime number, so adding its digits gives 1 + 2 + 8 = 11. This is a
prime number, so the prime digital root of 128 is 11.

886 This is not a prime number, so adding its digits gives 8 + 8 + 6 = 22. This is not
a prime number, so adding again gives 2 + 2 = 4. This is not a prime number, so
886 has no prime digital root.

Input

The input will contain a single integer on each line in the range 0 to 999 999 inclusive. The end
of the input will be indicated by the value 0.

Output

If the input number has a prime digital root, then the input number must be output right
aligned with a field width of 7. It must be followed by a single space, and then by the calcu-
lated prime digital root also right aligned with a field width of 7.

If the input number has no prime digital root, then the input number should be output as
defined above followed by 4 spaces followed by the word none (in lowercase). The terminating
zero should not be output.

Problem D: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Input

1

3

4

11

642

128

886

0

Sample Output

1 none

3 3

4 none

11 11

642 3

128 11

886 none

Problem D: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

E: Desert Bitmap
Time Limit: 2 sec

This problem requires you to search a black and white satellite image of a desert for a secret
building complex with a given shape. A complex of this given shape may host an installation
for producing the strategic xeenium macgillicudamate ingredient, and must keep its orientation
with regard to cardinal axes (North-East-South-West). Rotations and mirror images are not
allowed because they would interfere with the delicate alchemy required for the production pro-
cess. You must determine how many times the given complex may possibly occur in the image.

Consider the following images, both on the same scale, where a # (sharp) is a “black” pixel
representing a part of a building, and a . (dot) is a “white” pixel, representing sand. On the
left is an image of the complex you are trying to locate, on the right is an image of the desert
with some buildings on it.

• How many possible locations for the given secret buildings do we count?

• The answer is four : one at the top-left corner, two overlapped possibilities to its right, and
one in the bottom right. The shapes near the top-right corner, and in the centre bottom
don’t count because they are rotated (remember that rotated and/or mirrored images do
not count).

• Note that, as this answer implies, the sand pixels in the image of the building complex
simply establish the necessary relationships between the building parts. In the actual
image they may contain either sand or other building parts (possibly for disguising the
true nature of the complex).

• Assume that images representing strategic complexes are already trimmed of any un-
needed dot “white” pixels on the edges, i.e., these images will always contain at least one

character on each edge (as our example shows). An edge here is the first or last row or
column.

Input

Each problem will give you the specification for the building complex image followed by the
specification for the desert image. There may be several problems in the input data, which will
be terminated by a line containing just 0 0.

In each problem the input is:

• Line 1: 2 positive integers, B1, B2, respectively representing the number of lines and the
numbers of columns in the following Buildings image. Both numbers will be in the range
1 to 16 inclusive.

Problem E: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

• Next B1 lines: B2 characters (# or .) on each line to represent part of the image of the
building complex.

• Next Line: 2 positive integers, D1, D2, respectively representing the number of lines and
the numbers of columns in the following Desert image. Both numbers will be in the range
1 to 64 inclusive.

• Next D1 lines: D2 characters (# or .) on each line to represent the desert image.

Output

The output for each test case consists of a single integer value on a line by itself being the
number of matches found.

Sample Input

2 2

#.

##

3 5

#.#.#

#####

.###.

1 3

#.#

3 6

##..##

.#.#.#

#.#...

3 3

#..

#.#

#..

5 36

#......#........................#...

#.#....#.#...#.........#............

#......#.#...##....#...##......###..

.......#.....#...#.#...##........#.#

...................#.....#.......#..

0 0

Sample Output

4

3

4

Problem E: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

F: Spots
Time Limit: 5 sec

Painting tiles is hard work. John has convinced his two sons Raul and George to do a painting
job, by agreeing to pay one dollar per tile painted by each of them. Raul will paint red tiles and
George green tiles at the places indicated by their father. However, they are still not convinced:
How are they going to divide up the area to be painted, what happens if both want to paint
the same tile at the same time, what are the rules, and, last, but not least, how much will they
receive in the end?

To avoid arguments and to have some fun, John would like to show them a simulation of the
problem before the hard work begins. The simulation will start with each son at opposite
ends of a rectangular grid of width N and height M (N,M � 2), Raul at (0,0) and George
at (N � 1,M � 1). The two sons will begin by painting a spot in their respective colours on
their starting tiles. Next, Raul and George are each given a series of individual instructions
for moving to the next tile to paint. Each move can be repeated one or more times and is
defined by a pair of increments along the horizontal x-axis and vertical y-axis, in this order;
these increments can be positive, negative, or zero.

For example, assume that Raul is on his initial tile (0,0) on a grid with N = 10, M = 5,
and receives the instructions to hop 2 times in the direction of (1,0) and then 3 times in the
direction of (2,1). He will begin by painting a red spot on the tile (0,0). Then, according to
these instructions, he will successively land on and paint red spots on the following tiles: (1,0),
(2,0), (4,1), (6,2), (8,3). The following diagram uses the letter ‘R’ to mark the tiles spotted in
red by Raul according to his instructions:

At each simulation step the two sons move in lock-step, each hopping according to his own
instructions. To avoid conflicts, each time Raul and George are about to hop to the next tile
the simulation must check whether they would land on the same tile. If so, the simulation
ends without them moving, and the landing tile remains painted in its previous colour, if any.
Otherwise, the simulation will end as soon as one of the sons ends his instructions.

Each tile can contain only one colour spot, either red or green. Since it is possible that Raul
and George land on the same tile at di↵erent times, the simulation should only count the tile
towards the son landing there last.

Problem F: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

To avoid Raul and George falling o↵ the edge of the tile grid, they are allowed to wrap around,
in all directions. For example, for a grid of the same size as above, one hypothetical move from
(8,3) in the direction (2,3) results in the tile (0,1).

Your task is to write a program that computes the results of such a simulation given the grid
size and the instructions for each son.

Input

The input consists of one or more scenarios. Each scenario consists of 3 lines. The first line
contains two numbers separated by a space, N and M , 2  N,M  1000, respectively repre-
senting the width and the height of the grid. The second line contains the instructions for Raul
and the third line the instructions for George. Each instruction line starts with a number C,
in the range 1 to 100, followed by C groups of 3 numbers. In each group the first number is a
repetition count in the range 1 to 1,000,000,000, the second number is an increment along the
x-axis, and the third number an increment along the y-axis - both increments are in the range
-1,000 to 1,000. All numbers are separated by single spaces. The end of the input is indicated
by a “grid of size 0”, i.e., a ‘0’ on a line by itself.

Output

Output one line for each input scenario. Each output line should show two numbers separated
by a single space, representing the earnings of Raul and George, in this order.

Sample Input

10 5

2 2 1 0 3 2 1

3 4 -2 0 1 0 -9 2 1 0

10 10

2 1 15 5 1 0 0

2 1 0 0 2 -4 -4

10 7

2 1000 2 -1 1000 0 -1

2 1000 -1 0 1000 -1 0

10 10

5 1000 2 -1 1000 1 0 2 5 5 3 1 1 10 1 1

5 1000 -1 0 1000 0 1 3 -4 -4 2 -1 -1 10 -1 -1

0

Sample Output

5 6

2 1

30 10

18 18

Problem F: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

G: Mobiles
Time Limit: 5 sec

ACMIA mobile phones have a shortcut mode for typing text messages using the numerical

phone keypad. In this mode, the system uses a dictionary of known words. After a sequence of

digits is entered the system checks for and displays all possible matches in the dictionary. The

ACMIA phone keypad for the English alphabet is as follows:

1 2 abc 3 def

4 ghi 5 jkl 6 mno

7 pqrs 8 tuv 9 wxyz

0 (space)

Your task is to write a program that displays all possible matches for given digit sequences,

using a given dictionary.

A digit sequence corresponds to a sequence of words, with zero digits (‘0’) indicating spaces.

Leading and trailing zeros are ignored, and multiple consecutive embedded zeros are treated

as a single zero. For each sequence of non-zero digits, display the matching word from the

dictionary. When more than one match is available, display all matches in dictionary order

between round parentheses and separated by bars (‘|’). If there is no matching word, display a

sequence of asterisks (‘⇤’) of the same length. For example, with a dictionary consisting solely

of the words i, loud, love, programming, the digit sequence

0040568300077647266464077770

will be displayed as the text

i (loud|love) programming ****

Input

The input will consist of one or more scenarios, each scenario consisting of a dictionary of per-

mitted words and a series of digit sequences to be interpreted as text messages.

The dictionary consists of 1 to 1,000 words, one word per line, in increasing dictionary order,

with no duplicates. Each word consists of 1 to 30 lowercase letters. For any given non-zero

digit sequence there will be no more than 10 matching words in the dictionary. The end of the

dictionary is indicated by a line consisting of a single ‘#’.

The digit sequences to interpret as text messages follow the dictionary, one per line. Each

message line consists of 1 to 100 digits, with at least 1 non-zero digit. The end of messages is

indicated by a line consisting of a single ‘#’.

The end of input is indicated by an empty dictionary (a dictionary with zero words).

Problem G: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Output

For each scenario output a line consisting of the word ‘SET’ (all uppercase) followed by a space

and then the scenario number, starting with 1. Following this output the list of interpreted text

messages, one message per line.

Sample Input

i

loud

love

programming

#

0040568300077647266464077770

#

a

game

go

golf

good

hand

hold

hole

home

in

me

of

to

#

2046630426306304653

46086020466304663

#

#

Sample Output

SET 1

i (loud|love) programming ****

SET 2

a (good|home) (game|hand) (me|of) (golf|hold|hole)

(in|go) to a (good|home) (good|home)

Problem G: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

H: Encryption Scheme
Time Limit: 2 sec

Most text encryption schemes use a secret key string to convert the plain text to the enciphered
text in some way. A novel method being tested by the Australian Security Service consists of a
transformation of a key string K into a target string P using block moves. Each block move is
of the form copy(start, length), where start indicates a position in K and length is the number
of characters to be copied from K to P . Since the idea is to eventually transmit only the block
moves, the principle is to use as few block moves as possible. For example if:

K: abaabba

P: aaabbbabbbaaa

Assuming that here string positions start with 1, two shortest block move sequences would be:

copy(3,2);copy(4,3);copy(2,2);copy(5,2);copy(2,3);copy(1,1)

or

copy(7,1);copy(3,3);copy(5,2);copy(4,2);copy(5,3);copy(3,2)

The actual shortest block move sequences are not unique but the minimum number is 6 in this
case. If the moves are now transmitted, then it is possible to construct the plaintext message
P from the key string K.

The Australian Security Service is now automating this procedure, so given K and P they need
to count the minimum number of block moves from K to P . To make things simple at the
beginning, they are considering strings comprised of lowercase letters and digits. The set of
characters within string P is a subset of the set of characters of the key string K.

You are to help the Australian Security Service by writing a program to get two strings K and
P as above, and print the minimum number of block moves from K to P .

Assume that each of K and P is made up of 1 to 120 characters (K is allowed to be longer than
P).

Input

Input will consist of a sequence of lines. Odd lines are to be used as the key strings K, and
even lines to be used as target strings P . The input will be terminated by a ‘#’ by itself in the
place of a K string.

Output

The output will consist solely of the minimum number of block moves for each pair, one result
per line.

Problem H: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Input

abaabba

aaabbbabbbaaa

xy0z

zzz0yyy0xxx

#

Sample Output

6

10

COMMENTS

The first sample is discussed on the first page. Here follows a minimal sequence of block moves
for the second sample:

copy(4,1);copy(4,1);copy(4,1);copy(3,1);
copy(2,1);copy(2,1);copy(2,2);
copy(1,1);copy(1,1);copy(1,1)

Problem H: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

I: Bouncy Balls
Time Limit: 2 sec

The Department of Defence of a certain country (No, not Australia or New Zealand), in con-
junction with the Department of Police, have devised a brilliant method of saving money on
crowd control really bouncy rubber bullets. They had noticed that the rubber bullets they
had been using were largely being wasted those that hit anyone or anything usually just fell to
the ground, whereas if they were really, really bouncy, they would bounce o↵ and possibly hit
several more people before their energy was spent.

They decided to test this idea by building a special circular test rig. The bullet would be fired
into the rig horizontally and at some predetermined angle to the tangent to the rig at that point.
It would have su�cient energy to travel some considerable distance before stopping. (You may
assume cartoon physics, i.e. that it travels horizontally until it reaches the end of its travel, at
which time it drops to the floor.) However, as so often happens with lucrative defence contracts,
the contractor made o↵ with the money, so they decided to simulate the whole process on a
computer. This is where you come in.

Write a program that will read in details of a test rig and a series of test firings and determine
how many times the rubber bullet would bounce before it stops. You may assume that the
bullet is a point and that, because of problems in determining the exact sequence of events, any
test firing where the bullet stops within 1 mm of the rig is deleted from consideration.

Input

Input will be a series of tests, each test consisting of a series of test firings. Each test starts
with an integer specifying the radius of the test rig in millimetres and a value of 0 for the
radius terminates the input. Each test firing occurs on a line by itself and consists of a distance
in millimetres (between 100 and 10,000 inclusive) that the bullet will travel, and an angle, in
degrees, (between 10 and 170 inclusive, where 90 means directly towards the centre of the rig).
The series of test firings will be terminated by a line containing two zeroes (0 0).

Output

For each test rig, output a line with the words “Test Rig” followed by a space and then the
number of the test rig (a running number starting at 1) followed by a series of lines, one for
each test firing for that rig with each line giving the number of times a bullet bounces o↵ a wall
before it stops. This number is to be written without any leading or trailing spaces. A blank
line should appear between test rigs. Follow the example given below.

Sample Input

100

1000 23

1200 47

0 0

0

Problem I: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Output

Test Rig 1

12

8

Problem I: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

J: Lollies
Time Limit: 5 sec

Every day on his way home, little Billy passes by his great aunt Clara Mitchum’s house. Gen-
erally he stops in for a chat with the great ACM (as he lovingly refers to her) and sometimes he
asks for some lollies. When he does, she generally gives him some, but then adds “now don’t
be asking for any more for another N days” where N is some positive integer. If N = 1 that
means he can ask for some on the next day, but for example if it is April 6 and N = 4 then he
must wait until April 10 or later before asking for more lollies.

One day Billy happened to catch sight of the great ACM’s calendar, and noted that each day
was marked with two integers. He also noted that the first of these referred to the number of
lollies the great ACM would give him on a particular day, and the second to the delay that would
then be required before making another request. He copied down as much of the information as
he could, and has passed it to you to analyse. His objective, of course, is to get as many lollies
as he can.

Your task is to write a program which will report the total number of lollies that can be obtained
by Billy, and provide a schedule for obtaining that amount. In the event that there are two
or more ways to obtain the maximum number of lollies, Billy will choose the one where his
first collection is as late as possible, and among all collections with that first date, his second
collection is as late as possible, and so on.

Input

The input text consists of a number of sets of unrelated problems. The first line of a set is a
problem title consisting of a string of 1 to 20 letters. A single # on a line indicates the end of
input.

The “title” line is followed by a sequence of “day” lines. Each problem set contains between 1
and 100 days, including the limits. In the given order, the first “day” line corresponds to day
number 1, the second line to day number 2, the n

th line to day number n. Each “day” line
consists of two integers separated by a single space:

• an integer L, which is the number of lollies available on that day (1  L  100),

• an integer N , which is the associated delay (1  N  100).

Conventionally, a delay N pointing to a day beyond the end of the current problem refers to a
day with zero lollies and zero further delays (L = 0, N = 0).

Output

Each report must follow the format outlined in the Sample Output section below (use single
spaces for spacing).

In < problem title > < total amount > < lollies > can be obtained:
On day < day number > collect < day amount > < lollies >.
On day < day number > collect < day amount > < lollies >.
...

Problem J: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

In this notation, < problem title > represents the actual problem title, < total amount >, <
day amount >, and < day number > are numbers with self-described meaning, and < lollies >

stands for either “lolly” or “lollies”, as required by the context (the singular and plural forms
must be used appropriately). Days must be given in increasing sequence numbers. Each group
report should be separated from the next by a blank line.

Sample Input

January

1 1

2 2

3 3

February

10 3

7 1

5 2

1 1

March

2 3

1 1

3 7

2 7

#

Sample Output

In January 4 lollies can be obtained:

On day 1 collect 1 lolly.

On day 3 collect 3 lollies.

In February 12 lollies can be obtained:

On day 2 collect 7 lollies.

On day 3 collect 5 lollies.

In March 4 lollies can be obtained:

On day 2 collect 1 lolly.

On day 3 collect 3 lollies.

Problem J: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

K: Spreading Gossip
Time Limit: 5 sec

We have a remote village with n  20 houses (h0, h1, h2, . . . hn�1) and several secure telephone

lines linking neighbouring houses (there is exactly one line between each pair of neighbouring

houses). For any pair of houses hi and hj there is at least one path of telephone lines connecting

them (this can be viewed as an undirected connected graph with houses as vertices and lines as

edges).

Gossip can travel over telephone lines. Each house can call at most one neighbour house at a

time. Calls may begin at the beginning of each hour (e.g., 9 am, 1 pm, 6 pm, etc.), and last for

exactly one hour. The local telephone company charges a fortune for each call, but has a quirk

that any number of calls can be made in parallel at the same price as any single call.

Given this scenario, we want to find the minimum total price (minimum number of used hours)

to disseminate some gossip from house h0 to all other houses.

Input

The input involves a series of scenarios. Within each scenario the first line has an integer num-

ber n, the number of houses. This first line is followed by n other lines, one for each house, in

the order h0, h1, h2, . . .hn�1. Each “house” line contains a list of indices of its neighbouring

houses (in no particular order), separated by single spaces.

The series is terminated by a scenario with n = 0, which isn’t processed.

Output

The output must be “Village s: p”, where s is the scenario sequence number starting at 1

and p is the answer for each input village (use single spaces as separators, i.e., one space after

the word “Village” and another space after the colon “:”).

Sample Input

4

1 2

0 3

3 0

1 2

7

1 2 3

0 2

0 1 3 4

0 2

6 2 5

4 6

4 5

0

Problem K: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Output

Village 1: 2

Village 2: 4

Problem K: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

L: Swiss Draw
Time Limit: 2 sec

Many sports and games hold tournaments to determine at least a winner and, very often, a
ranking or ordering as well. In two player games (such as Tennis, Chess and Scrabble), the two
most common forms of tournament are ‘knockout’ (usually based on an initial ranking or ‘seed-
ing’) and ‘round robin’ (where everybody plays everybody else). The disadvantage in knockout
is that a promising newcomer could meet a very much stronger player early in the tournament
and not reach their true position. Round Robin eliminates this but at a huge cost in time - a
Round Robin involving 128 players needs 127 rounds whereas it would take only 7 rounds in a
knockout competition.

An alternative known as Swiss Draw is very popular in games such as Scrabble. To maximize
competition, any one player will play any other player no more than once. After each round,
players are ranked on the number of games they have won, where a draw is equal to half a
win (more is better) and, within that, by ‘spread’ - the cumulative di↵erence between their
scores and their opponents’ scores (again bigger is better). If by chance two or more players
tie in this ranking then they appear in inverse order of their previous ranking, i.e. the initially
lower-ranked players move ahead. In each round each player either plays someone above them
or the highest ranked player below them that allows everyone to play someone they have not
played before. The input will specify the (usually random) ordering before the first game.

Write a program to determine the final ranking of a group of Scrabble players, given the initial
draw and the scores for each individual for each round.

Input

Input will consist of one or more scenarios. The first line of each scenario will consist of two
integers, P and R, (16  P  64, 4  R  P/4) denoting the number of players (a multiple of
two) and the number of rounds respectively. This will be followed by P lines, each line consisting
of a name (a string of 1 through 20 alphabetic characters without any spaces) followed by R
integers (separated from each other and the name by at least one space) representing the R
scores for that individual. The list will be in the initial order of play, thus in the first round
player 2n+1 played player 2n+2 (0  n < P/2). Input will be terminated by a line containing
two zeroes (i.e. P and R both zero).

Output

Output will consist of a list of all the players ranked according to the above criteria, together
with the number of wins and the spread. Note that a draw is counted as half a win, so indicate
an odd number of draws by a plus sign (+) after the number of wins. The name is left justified
in a field of width 20, the number of wins is right justified in a field of width 3, specification of
draws occupies 1 character position and the spread is right justified in a field of width 6. Leave
one blank line between scenarios.

Problem L: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Input

16 4

Absalom 280 334 319 426

Betsheba 374 514 459 417

Carolyne 318 415 445 481

Davidian 402 361 375 278

Eleanor 425 302 447 522

Frances 425 513 306 327

Gabriel 330 337 365 398

Hermione 539 254 442 450

Ishmael 485 305 540 522

Jeremiah 288 295 367 476

Kenneth 532 304 452 445

Laurence 426 437 260 474

Meredith 438 489 274 475

Nicholas 307 357 380 482

Octavia 426 498 305 497

Patricia 333 253 370 412

0 0

Sample Output

Ishmael 4 619

Meredith 3 247

Carolyne 3 186

Betsheba 3 158

Kenneth 3 126

Eleanor 2+ -11

Hermione 2 264

Laurence 2 -93

Nicholas 2 -114

Davidian 2 -150

Frances 1+ -119

Octavia 1 -85

Absalom 1 -187

Jeremiah 1 -188

Gabriel 1 -338

Patricia 0 -315

Problem L: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

M: Maze Madness
Time Limit: 5 sec

You have been placed somewhere in a maze and you wish to escape by the shortest possible
route. Fortunately you have been given a map of the maze. Before setting o↵, you wish to
calculate the distance you need to travel. Your task is to write a program that will calculate
the shortest distance to leave the maze. Note that there may be more than one exit and the
specified start position could be at any location within the maze.

The maze is set on a grid that has M columns and N rows, with 1  M,N  100. Some
squares of this grid have impenetrable walls of negligible thickness between them (or on their
outside border). You may move from any square to a horizontally or vertically adjacent square
(possibly outside the maze, thus escaping) provided that there is no wall between them. Each
single move between squares adds 1 meter to the distance travelled.

Input

The input involves a series of scenarios. Within each of the scenarios the first line has the size
of the maze. This is given as two numbers M and N . Then the maze is drawn on 2 ⇤ N + 1
lines and 2 ⇤M + 1 columns using the printable characters “-”, “|”, “+”, “.”, “ ” (space), and
“s”:

• “|” is used for “vertical” walls,

• “-” is used for “horizontal” walls,

• “+” is used to indicate boundaries between rows and columns (there are always (N +1) ⇤
(M + 1) of these),

• “.” is used for wall openings,

• “ ” (space) is used for empty squares,

• “s” is used to show your start location (there is exactly one “s”).

A line with “0 0” indicates the end of the scenarios.

Output

Output a single line for each of the scenarios. This line should contain either “Maze i: d”
or “Maze i: No escape!”, where i is the scenario number (counting from 1) and d is the
minimum distance (in meters) needed to escape (use single spaces for spacing).

Problem M: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Input

1 1

+-+

|s.

+-+

3 2

+-+-+.+

| .s| |

+-+.+-+

| . . .

+-+-+-+

5 6

+-+-+-+-+-+

| |

+-+-+.+-+-+

| |s. . . |

+.+-+-+-+.+

| | . . . |

+.+-+-+-+.+

| | . . . |

+.+-+.+-+.+

| . . | | |

+-+-+.+.+.+

. . . | . |

+-+-+-+-+-+

3 2

+-+-+.+

| .s| |

+-+-+-+

| . . .

+-+-+-+

0 0

Sample Output

Maze 1: 1

Maze 2: 3

Maze 3: 12

Maze 4: No escape!

Problem M: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

N: Basalt Buckets
Time Limit: 5 sec

Under certain conditions volcanic basalt forms large crystals, like hexagonal pillars. At Fingal
Head, at the border of New South Wales and Queensland, there is a dramatic example, called
Giant’s Causeway, where a peninsula formed of such columns juts into the Pacific. It is par-
ticularly dramatic when the big Pacific rollers break on the causeway, leaving streams of water
cascading over the basalt pillars.

Your task is to find out how much water could collect in hexagonal hollows, formed when some
pillars are shorter than others, and can act as wells.

Here is a diagram of a set of hexagons. Each hexagon has an integer height. Water can always
cascade o↵ the edge of the set of hexagons, but it will collect in the five shaded hexagons, since
they form wells completely surrounded by higher hexagons. Water drains from the left hand
pair over two pillars of height six, and from the three on the right water drains over a pillar of
height seven. Assuming each hexagon has unit area, the volume of water that can collect is 17
units.

Your program must handle input as a series of problem descriptions.

Input

Each problem begins with two integers X and Y , on a line by themselves, in the range 1 to 200
inclusive, giving the number of hexagons along an X-axis, and along a Y -axis, as shown in the
diagram. Then there are given a further X ⇤Y integers, in the range 0 to 5,000 inclusive, which
are the heights of the hexagons. The order of input heights is given as Y rows of X integers,
but they may be split across lines arbitrarily. The given diagram is described by input as given
in the Sample Input section.

Output

The output must consist only of one integer for each problem given, on a line by itself with no
spaces, giving the volume of water that could collect for that set of columns.

Problem N: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Input

5 6

8 12 7 13 0 3 6 5 9 0 12

4 7 8 8 6 9 1 2 12 12 15 13 4 9 0 7 8 12 5

0 0

Sample Output

17

Problem N: Page 2 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

O: Four in a Line
Time Limit: 5 sec

Four in a Line is a game similar to 3-dimensional noughts and crosses. It consists of a horizontal
table on which 16 pegs, each of which can hold 4 beads, are arranged in a 4 x 4 grid. Each
player has a supply of either green or red beads which are placed on the pegs in turn, starting
with red. Obviously, as each bead is placed on a peg, it slides down as far as it can - until it
either hits another bead or the supporting table. The winner is the first to get 4 beads of their
colour in a line (hence the name). The line can be in any plane and in any orientation, as long
as the four beads are all of the same colour and form a straight line.

As with most games, the interesting part comes towards the end, when each player (colour)
is attempting to build a line and block the opponent’s incipient lines. Write a program that
will read in details of a game position and determine whether green (the next player) can be
guaranteed to win the game within 5 plies. A ply is half a turn, in this situation placing one
bead, thus 5 plies implies three moves by green and two by red.

Input

Input consists of a number of games. Each game consists of 4 lines of characters, each line
consisting of 4 blocks of 4 characters – ‘R’ for red, ‘’ for green or ‘’ for empty - where each
block represents the contents of a single peg with the left end representing the bottom. Thus
the block ‘GRR’ represents a peg with a green bead on the bottom with two red beads above
it. Note that the entire state of the game is always given, thus the starting state would consist
of 64 ‘’ characters arranged in 16 blocks of 4. You can assume that the position is valid, i.e.
that there will be exactly one more red bead than green beads, and that there will not be any
‘holes’ in the description (the ‘block’ GRG, for instance). There will be one blank line after
each game and input will be terminated by a line containing only a single ‘’.

Output

For each game description in the input, output a single line of the form “Green can win in N
move(s)”, where 1  N  3, and where N is the smallest such number, or “Green cannot win
in 3 moves”. Use the singular form when N = 1 and the plural form otherwise.

Sample Input

GGG# RR## R### R###

####

####

####

RRR# RGG# RGG# ####

####

####

####

#

Problem O: Page 1 of 2

1st Maybe-Semi-Annual QUT Coding Throwdown April 8 to April 15, 2015

Sample Output

Green can win in 1 move

Green cannot win in 3 moves

Problem O: Page 2 of 2

