
ACM ICPC

South Pacific Region

Divisional Round

August 22, 2015

Central Division Contest Problems

A: Selling Numbers
B: Almost an Anagram
C: Who Do You Think You Are?
D: Banking
E: Resistance Is (Not) Futile!
F: Protest
G: Be Rational
H: Shelob’s Lair
I: Diana and the Golden Apples
J: Painting Floors
K: Folding Code

This page has intentionally been left almost blank

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

A: Selling Numbers

Time Limit: 10 second(s)

Revolutionising telephony is expensive business. That’s why young entrepreneur Ace E. Emme is hoping
to sell some of his trademarked Global Unique phone numbers first, and then direct the resulting cash
at the technical hurdles to see what happens.

Global phone numbers will need to have plenty of digits, which makes it more important than ever to buy
a number that is easy to recite from memory. To this end, each phone number is given a Memorisability
Score. For a particular phone number, the score is determined as follows:

1. Initialise the score to zero.

2. For each substring of length L, add L to the score if the substring is a palindrome and L ≥ 2. A
palindrome is a sequence that reads the same backwards as forwards.

3. For each pair of non-overlapping substrings A and B, where B appears after A, and each is of
length L, with L ≥ 2, add L to the score for each and every one of the following conditions that
holds:

(a) A = B

(b) A = B and B is adjacent to A

(c) A is equal to B in reverse.

Mr Emme is interested in pricing the phone numbers, therefore counting how many there are with a
particular score is crucial for designating them as Gold Class, Diamond Class and Diamond Class Plus
Plus.

Note that each rule on a given substring or pair of substrings is treated independently of the application
of this or other rules to other substring(s). For instance, a palindrome of length 5 always contains a
palindrome of length 3, as well as a match of rule 3(c). Therefore, the effective score for such a five-
character substring will be at least 5 + 3 + 2. This is intentional, as longer patterns appear more
lucrative to customers than multiple smaller patterns of the same total length, so a higher score is
warranted.

Input

The input contains no more than 11 000 test cases.

Each test case will consist of two integers D (0 < D < 12) and S (0 ≤ S < 1000) on a line, separated
by a single space. This is a query asking how many phone numbers with D digits are there with
Memorisability Score equal to S. Note that phone numbers with leading zeros are considered valid.

The input concludes with a pair of zeros on a line by itself.

Output

For each test case, print a sentence: “Among D digit phone numbers, there are N with score S.”
Follow the format of the sample output.

Problem A: Page 1 of 2

Central Division Programming Contest August 22, 2015

Sample Input and Output

Sample Input 1 Output for Sample Input

2 2

3 7

3 0

0 0

Among 2 digit phone numbers, there are 10 with score 2.

Among 3 digit phone numbers, there are 10 with score 7.

Among 3 digit phone numbers, there are 720 with score 0.

Problem A: Page 2 of 2

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

B: Almost an Anagram

Time Limit: 1 second(s)

Andy loves anagrams. For the uninitiated, an anagram is a word formed by rearranging the letters of

another word, for example rasp can be rearranged to form spar. Andy is interested to know if two

words are almost anagrams. A word is almost an anagram of another word if:

• one word is shorter than the other by one letter but otherwise contains the same letters in any

order; or

• the two words are the same length and their character multisets differ by one character only e.g.

“aaa” and “aab”

Your job is to help Andy to determine if two words are identical, anagrams, almost anagrams or nothing

like each other.

Input

The input contains a single test case.

The input will be a single line of text containing a pair of words separated by a single space. The words

will be in lower case and will contain alphabetic characters only. Words will contain between 1 and 1000

letters inclusive.

Output

Your program should produce one line of output as follows:

• If the words are identical, output: worda is identical to wordb

• If the words are anagrams, output: worda is an anagram of wordb

• If the words are almost anagrams, output: worda is almost an anagram of wordb

• Otherwise, output: worda is nothing like wordb

In all cases the first word in the output sentence must be the shorter word or if the words are the same

length the first word must be the lexicographically least.

Sample Input and Output

Sample Input 1 Output for Sample Input

rasp spar rasp is an anagram of spar

Sample Input 2 Output for Sample Input

table able able is almost an anagram of table

Sample Input 3 Output for Sample Input

sable table sable is almost an anagram of table

Problem B: Page 1 of 1

This page has intentionally been left almost blank

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

C: Who Do You Think You Are?

Time Limit: 2 second(s)

Aunt Clara-May has been taking an interest in the genealogy of the family. She is able to construct a
family tree but is getting confused with the relationships between different members of the family.

She wants to identify the following relationships: father, mother, uncle, aunt, son, daughter, nephew,
niece, cousin, husband and wife. She also wants to be able to recognise whether the members in the
family are related by blood or by marriage (i.e. in-laws), as well as different generations in the family
such as grandparents, grandchildren, great grandparents, great grandchildren, great great grandparents,
great great grandchildren etc. and different degrees of cousins including levels of removedness (e.g.
second cousins-in-law twice removed).

Aunty C-M, as you call her, has some definitions of these relationships but needs your help to write a
program to construct the family tree and name the relationships.

You have told Aunty C-M that you will help under the following conditions:

• no second marriages which require step relationships e.g. step-brother and step-father will be recorded

• all children in the family tree will be the offspring of a male father and a female mother who are
married

• no marriages between siblings or between cousins of any type have occurred

• all people in the family tree are connected

Further to those conditions, the following definitions apply:

• father and mother are the parents of a child

• brother and sister are male and female siblings with the same parents

• son and daughter are the children of a parent

• uncle and aunt are the brother and sister of a child’s parent

• nephew and niece are the male and female children of a sibling

• a grandfather and grandmother are the male and female parents, respectively of a child’s parent

• a great grandfather and great grandmother are the father and mother, respectively, of a child’s
grandparent

• a great uncle or great aunt is a sibling to a child’s grandparent

• cousins (not removed) are at the same level in the family tree

– first cousins have the same grandparents

– second cousins have the same great grandparents

– and so on

Problem C: Page 1 of 3

Central Division Programming Contest August 22, 2015

• removed cousins are at different levels in the family tree

– a first cousin once removed is the child of one of the first cousins

– a first cousin twice removed is the grandchild of one of the first cousins

– and so on

• cousin relationships are symmetric e.g. if A is the first cousin twice removed of B, B is also the first
cousin twice removed of A

• where a relationship occurs due to marriage of two people the relationship is said to be in-law

– the parent of a person’s husband or wife is a father-in-law or mother-in-law

– the sibling of a person’s husband or wife is a brother-in-law or sister-in-law

– the cousin of a person’s husband or wife is a cousin-in-law

Figure 1 displays the family tree described in the Sample Input. Your program should be able to say that
Claire and Carol are 1st cousins, Claire and Diva are 1st cousins 1-time removed, and Claire
and Chris are cousins-in-law. Your program should also be able to generate any other relationship
combinations when queried.

Figure 1: Sample Input

Input

The input contains a single test case.

The input consists of a list of relationships for construction of the family tree. The list of relationships
will be followed by a list of queries for which you will name the relationship. Relationships will be
provided to infer the gender of all family members.

All relationships will be in lower case and all names will be unique. At most one person in each marriage
will have parents present in the input.

The first line of input contains a single integer r (1 ≤ r ≤ 200) being the number of relationships for
building the family tree. r lines of relationship definitions follow. Each relationship consists of three
alphabetic strings, name1, name2 and relation, each separated by a single space. relation will be one
of husband, wife, son or daughter. The relationship line can be read as:

name1 is the relation of name2

The relationships are followed by a line containing a single integer q (1 ≤ q ≤ 200) being the number
of queries on the family tree. q query lines follow. Each query line consists of two strings, name1 and
name2 separated by a single space. The names in the queries will be contained in the family tree.

Problem C: Page 2 of 3

Central Division Programming Contest August 22, 2015

Output

For each relationship query, output the relationship between name1 and name2 on a single line.

In the following definitions mandatory items are delimited with (and), optional items are delimited
with [and], options are separated by |. Elements which may require repetition (1 to many) are followed
by *.

• For a spousal relationship i.e. husband or wife, output a sentence of the following form:

name1 is the (husband|wife) of name2

• For a sibling relationship i.e. brother or sister, output a sentence of the following form:

name1 is the (brother|sister)[-in-law] of name2

• If the relationship is some kind of cousin, output a sentence which includes the degree of cousinship i.e.
1st, 2nd, 3rd etc. followed by the word cousins, then the suffix -in-law if and only if the relationship
is by marriage and finally the number of times removed (1-time removed, 2-times removed, 3-times
removed, etc.).

name1 and name2 are (1st|2nd|3rd|...) cousins[-in-law][(1-time|2-times|3-times|...) removed]

• If the relationship is aunt, uncle, nephew or niece, the output may require one or more instances of
the word great.

name1 is the [great]*(aunt|uncle|nephew|niece)[-in-law] of name2

• Otherwise the relationship will be one of son, daughter, father or mother. Relationships which are
two generations apart will require the use of the word grand before the relationship. Relationships
which are more than two generations apart will require the use of one or more instances of the word
great before the word grand.

name1 is the [[great]*grand](son|daughter|father|mother)[-in-law] of name2

Sample Input and Output

Sample Input Output for Sample Input

10

Alex Alice husband

Ben Alex son

Chase Ben son

Diva Chase daughter

Carol Ben daughter

Belle Alex daughter

Chris Chase wife

Blake Belle husband

Billie Ben wife

Claire Belle daughter

10

Claire Carol

Claire Diva

Claire Chris

Billie Belle

Billie Chris

Billie Chase

Belle Carol

Blake Carol

Carol Belle

Carol Blake

Claire and Carol are 1st cousins

Claire and Diva are 1st cousins 1-time removed

Claire and Chris are 1st cousins-in-law

Billie is the sister-in-law of Belle

Billie is the mother-in-law of Chris

Billie is the mother of Chase

Belle is the aunt of Carol

Blake is the uncle-in-law of Carol

Carol is the niece of Belle

Carol is the niece-in-law of Blake

Problem C: Page 3 of 3

This page has intentionally been left almost blank

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

D: Banking

Time Limit: 1 second(s)

Internet banking sites have a variety of methods to authenticate their users. The methods usually involve
passwords or Personal Identification Numbers (PINs) together with a mechanism to verify that a person
is attempting to authenticate rather than a computer program.

The Actuarial Commerce Merchant bank has a scheme where, when you login, you are provided with a
“pattern word”, containing only upper and lower case letters. You must use this pattern word to extract
and sum digits from your PIN as follows.

Letters in the pattern word are to be interpreted as numbers, with a (or A) = 1, b (or B) = 2, ... z
(or Z) = 26. A lower case letter specifies a count of digits to extract from the PIN while an upper case
letter specifies a counts of digits to be skipped. The letters in the pattern word are processed from left
to right resulting in a sequence of extracted digits, which are added together to yield a number. You
then enter that number into a field on the web page form to authenticate yourself. For example, if your
PIN was 1093373, and the pattern provided to you was aBcA you would extract one digit (namely 1)
skip two digits (09), extract 3 digits (337) and then skip 1 digit (3), before totalling the extracted digits
(1337) and entering 14 into the field on the web page form.

The bank allows you to have a PIN containing up to 256 digits and they intend to provide a pattern word
in which the letters, when interpreted as numbers, sum to the length of the PIN. However, sometimes
they get this wrong!

Write a program that reads a PIN and a pattern word and outputs the sum of the digits extracted from
the PIN if the pattern is valid or outputs non sequitur if the length of the PIN and the length indicated
by the pattern are different.

Input

The input contains a single test case.

The first line of input will contain an n-digit PIN, 6 ≤ n ≤ 256. The second line will contain an m-digit
pattern word containing only upper and lower case letters, 1 ≤ m ≤ 256.

Output

The test case will produce one line of output being either the sum of the extracted digits from the PIN
if the pattern word is valid or the text non sequitur if the pattern is invalid.

Sample Input and Output

Sample Input 1 Output for Sample Input

092384907653

bGc

23

Sample Input 2 Output for Sample Input

092384907653

bGb

non sequitur

Problem D: Page 1 of 1

This page has intentionally been left almost blank

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

E: Resistance Is (Not) Futile!

Time Limit: 2 second(s)

You have been hired by Acme Circuit Manufacturers to help reduce the number of resistors used in their
mass-produced electrical circuits, which will reduce manufacturing costs.

The humble resistor is a small, but crucial component in every elec-
trical circuit. It plays a major role in regulating the flow of electrons
(current) throughout a circuit by converting electrical energy into
kinetic energy (heat), and dissipating that heat, in a controlled and
quantified manner. We refer to this energy conversion as resistance.
The unit of measurement to quantify resistance is ohms. The higher
the ohm value, the higher the resistance.

When deciding on the number and type of resistors to be used, we
need to first consider how much current we want within a path of
a circuit, and also the potential energy needed to transfer electrons
from one point along that path to another (voltage). We relate
current, voltage and resistance, using a very simple formula known
as Ohm’s Law :

V = IR (where V is voltage, I is current and R is resistance).

For example, let’s say that on a given path in our circuit, we have
44558 volts applied and need 10 amperes of current through that
path. By applying Ohm’s Law (and rearranging the equation to

make R the subject), we determine that we need to place a resistor along that path whose resistance is
4455.8 ohms. Problem solved, right?

Wrong.

Unfortunately, ACM only assembles circuits, it does not manufacture the components. This includes
resistors. In fact, most electronics companies rely on pre-manufactured resistors. Because of this, there
has been a need for standardisation of resistor values. ACM makes use of the E-12 standard range of
resistors, so called because there are 12 standard base resistor values that all resistors in that range make
use of, namely:

10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82.

This is referred to as the first decade of E-12 resistor values (measured in ohms). The second decade is:

100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680, 820.

The third and subsequent decades can easily be derived by multiplying each base value by the appropriate
power of 10.

Problem E: Page 1 of 2

Central Division Programming Contest August 22, 2015

The resistances of E-12 resistors are usually only approximately equal to their nominal value but ACM
have found a supplier that guarantees exact resistances. ACM wishes to use combinations of these exact
resistors to achieve close approximations to actual desired resistances while using the fewest number of
resistors. Resistors are always to be connected in series so that the resistance value of a set of resistors
is the sum of their resistances. To measure the closeness of an approximation, ACM define the error as
the distance of the approximate value (the sum of the resistances) from the target value expressed as a
percentage of the approximate value. They wish to ensure that that error is at most 1%.

For example, if we wish to approximate 4455.8 ohms, we could choose the following set of resistors:

3900, 470, 82

as they sum up to 4452 ohms. The error is only |(4455.8 − 4452)| ∗ 100/4452 = 0.085% which is well
within the desired accuracy of 1%. However, a better choice would be:

3900, 560.

While the total resistance of 4460 ohms is not as accurate as that achieved with the previous choice,
the error is still well under 1% and, importantly, this combination uses one less resistor (remember,
manufacturing costs add up on a large scale).

Your task is to write a program that, given a voltage and current, chooses the best set of resistors to
provide the required amount of resistance to within the 1% error as defined above.

Input

The input contains a single test case.

The input has two integer values V (1 ≤ V ≤ 109) and I (1 ≤ I ≤ 107). V is the voltage and I is the
current.

Output

Output a series of E-12 resistor integer values, from largest value to smallest value, separated by a space,
which consists of the lowest number of resistors that approximates the target resistance with an error of
at most 1%.

You can use the same resistor value more than once. If you find two or more resistor sets with the same
number of resistors that are within the error range, output the set whose sum is closest to the target
value. If there are two sets that are the same distance from the target value, output the set whose sum
is smaller. If there are still ties, output the set of resistors which is lexicographically least (when the
resistors are ordered from largest to smallest).

If there are no possible sets of resistors that allow this resistance, output Impossible instead.

Sample Input and Output

Sample Input 1 Output for Sample Input

50000 5 10000

Sample Input 2 Output for Sample Input

44558 10 3900 560

Sample Input 3 Output for Sample Input

1 1 Impossible

Problem E: Page 2 of 2

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

F: Protest

Time Limit: 3 second(s)

A group of militant IT students want to march from the Computer Science building to the university
Vice Chancellor’s office to protest the removal of BASIC as the first-year programming language. The
students plan to march arm-in-arm in rows to present a unified front. Once a row locks arms, they will
stay that way until their demands are met.

The protest planners have mapped out all the walkways on campus to figure out how many students
wide each walkway is. All walkways on the campus allow foot traffic in both directions. The planners
can see from the campus map that there is a path from the Vice Chancellor’s office from the Computer
Science building but they need your help with their plans.

As the protesters’ leading algorithmist they need you to find a path from the Computer Science building
to the Vice Chancellor’s office that maximises the number of students who can walk arm-in-arm for the
duration of the walk.

Input

The input contains a single test case.

The first line contains two integers p (2 ≤ p ≤ 1 000) and w (1 ≤ w ≤ 50 000) specifying the number of
unique walkway end points and the number of walkways on the university campus.

The second line contains two integers c and v (0 ≤ c, v < p; c 6= v) being the walkway end points for the
computer science building and the vice chancellor’s office respectively.

The following w lines contain three integers wstart, wend (0 ≤ wstart, wend < p;wstart 6= wend) and
wwidth (1 ≤ wwidth ≤ 1 000) being the start and end points for a walkway and the number of students
that will be able to walk arm-in-arm along that particular walkway.

Output

On a single line output the maximum number of students who can walk arm-in-arm from the Computer
Science building to the Vice Chancellor’s office.

Problem F: Page 1 of 2

Central Division Programming Contest August 22, 2015

Sample Input and Output

Sample Input Output for Sample Input

7 11

3 5

0 1 15

0 2 23

1 2 16

1 3 27

2 4 3

2 6 21

3 4 14

3 5 10

4 5 50

4 6 9

5 6 42

16

Problem F: Page 2 of 2

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

G: Be Rational

Time Limit: 1 second(s)

Captain Jean-Luc Picard and the crew of the U.S.S. Enterprise NCC-1701-D have been dispatched yet
again to negotiate a peace treaty, this time between two warring cultures, the Decimators and the
Fractionalists. They have fought for many years over the correct way to represent rational numbers.
The Decimators represent each rational number as a possibly repeating decimal number, such 0.444...

(which they write as 0.(4) with parentheses to denote the repeated part), whereas the Fractionalists
represent each rational number as a fraction, such as 4/9. After a devastating war in which hundreds of
millions died, the Fractionalists have won. The crew of the U.S.S. Enterprise has the task of converting
all numbers in the treaty to fractional form.

Input

The input contains a single test case.

The input consists of a positive rational number, represented as a possibly repeating decimal number.
The whole number part comes first, and is always present. The whole number part may then be followed
by both a period and a decimal part. The decimal part may end with a repeating part, which is
contained in parentheses. For example, 0.(4) represents the repeating decimal number 0.444. . . . There
is no whitespace within a line. Each test case is no more than 10 characters long.

Output

Output a single line containing a fraction representing the input rational number. The fraction must be
in reduced form i.e. the numerator and denominator contain no common factor.

Sample Input and Output

Sample Input 1 Output for Sample Input

2015 2015/1

Sample Input 2 Output for Sample Input

0.(4) 4/9

Sample Input 3 Output for Sample Input

3.(142857) 22/7

Sample Input 4 Output for Sample Input

9.(9) 10/1

Problem G: Page 1 of 1

This page has intentionally been left almost blank

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

H: Shelob’s Lair

Time Limit: 10 second(s)

Sam Gamgee and Frodo Baggins are trapped in Shelob’s lair. Shelob is a gigantic spider who lives in
the caves at the edge of Mordor. Sam and Frodo are Hobbits, which means that they are little people
with hairy feet.

The cave is a large rectangular cavern and Shelob has cast many great webs in the cave, and now Frodo
and Sam (who are at the South wall of the cave) must reach the North wall to escape. If Sam and Frodo
touch any of the web, they will become stuck and Shelob will come and eat them.

Sam has a magic sword, Sting, that can cut through Shelob’s web. However, Frodo is poisoned and Sam
is exhausted from their adventures, so Sam only has the strength to make one vertical slice through the
web once. A well-chosen slice at a point will cut through all of the webs that pass through the point,
allowing Sam and Frodo to pass. Sam and Frodo, being little people, can fit through an infinitely small
slit.

Given the locations of all the webs in the cave, determine if it is possible for Sam and Frodo to escape.

We suppose that each web is a vertical sheet that runs from one point (given by Cartesian coordinates)
to another point. The webs are fixed at the roof and the floor of the cave, and run in a straight line
between the two points. Multiple webs can cross one another (Shelob is a skilled web spinner) and if
Sam were to slice exactly where they cross he could slice all of the webs at once. No web touches the
North or South wall of the cave. Sam is also able to cut at precisely the point one or more webs connect
to the East or West walls of the cave. You may treat Frodo and Sam as a point, so they can fit through
the vertical cut and can fit between two webs that do not intersect.

Input

The input contains a single test case.

The first line consists of three integers, w (the width of the cave), d (the depth of the cave), and n (the
number of webs that are cast), where 1 ≤ w, d ≤ 1000 and 1 ≤ n ≤ 500.

Next, n lines follow where each line contains 4 integers, x1, y1, x2, y2, where 0 ≤ x1, x2 ≤ w and
0 < y1, y2 < d. (x1, y1) is the Cartesian coordinates of one end of the web, and (x2, y2) is the Cartesian
coordinate at the other end of the web. The coordinates are arranged so that the South-West corner of
the cave is the point (0, 0), and the North-East corner is the point (w, d).

Output

If it is possible for Frodo and Sam to reach the North wall, making at most one slice through the web,
print the line:
We can make it Mr Frodo!

If it is impossible for Frodo and Sam to reach the North wall without making more than one slice through
the web, print the line:
We’re doomed Mr Frodo!

Problem H: Page 1 of 2

Central Division Programming Contest August 22, 2015

Sample Input and Output

Sample Input 1 Output for Sample Input

5 5 3

0 3 5 3

0 1 5 4

0 2 5 4

We’re doomed Mr Frodo!

Sample Input 2 Output for Sample Input

5 5 3

0 1 5 3

0 3 5 1

0 2 5 2

We can make it Mr Frodo!

Sample Input 3 Output for Sample Input

4 4 3

0 1 3 3

0 3 1 3

4 3 1 1

We can make it Mr Frodo!

The following diagrams are images for the Sample Inputs:

Freedom

✦
✦
✦
✦
✦

✦
✦

✦
✦

✦
✦
✦
✦✦❛

❛
❛
❛

❛
❛
❛
❛
❛
❛
❛
❛
❛❛ ✑

✑
✑

✑
✑
✑
✑
✑✑◗

◗
◗
◗
◗
◗
◗
◗◗

✑
✑

✑
✑

✑
✑

✑
✑✑✧

✧
✧
✧

✧
✧

✧
✧
✧
✧
✧
✧
✧
✧

✦
✦
✦
✦

✦
✦

✦
✦
✦
✦
✦
✦
✦✦

0 54321

1

2

3

4

5

Sam Sam

4

3

2

1

0 1 2 3 40 54321

1

2

3

4

5

Sam

Freedom Freedom

Problem H: Page 2 of 2

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

I: Diana and the Golden Apples

Time Limit: 20 second(s)

The famously fleet-of-foot Roman huntress Diana has agreed to marry any man who can beat her or
even equal her in a running race. A challenger, Prince Humperdonkey of Troy, is intending to beat her
in a race by leaving golden apples along the track. He believes she will be tempted to pick them up,
thereby slowing her down enough that he will be able to beat her. Little does he know that Diana, who
has no wish to marry anyone at present (and certainly not the loathsome Humperdonkey) is an ICPC
competitor who is perfectly able to compute exactly how many golden apples she can pick up while still
winning the race. You are Diana and your job is to get as rich as possible while remaining single.

Input

The input contains a single test case.

The first line of input contains 5 space-separated integers: 1 ≤ L ≤ 1 000, the length of the race in units
of 100 m; 10 ≤ Td, Th ≤ 30 the time in seconds that it takes Diana and Humperdonkey respectively to
run 100 m; 0 ≤ N ≤ 1000 the number of golden apples Humperdonkey has placed on the race track; and
0 < d ≤ 10, the extra time in seconds that Diana takes to cover 100 m for each additional kilogram of
gold that she is carrying.

This is followed by N lines, each with 2 space-separated integers 0 < wi ≤ 50, the weight of the ith apple
in kg and 0 ≤ xi < L, the distance of the ith apple from the start of the track in units of 100 m.

Output

A single integer W ≥ 0, being the maximum weight in gold apples that Diana can be carrying when
she crosses the finish line if she is to finish ahead of Prince Humperdonkey. If Diana is unable to beat
Humperdonkey the output line should instead be

Diana marries Humperdonkey

Sample Input and Output

Sample Input 1 Output for Sample Input

20 10 16 4 2

2 8

3 9

4 10

30 18

5

Sample Input 2 Output for Sample Input

16 18 18 0 2 Diana marries Humperdonkey

Problem I: Page 1 of 1

This page has intentionally been left almost blank

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

J: Painting Floors

Time Limit: 1 second(s)

I really need to paint my floor! My floor is rectangular and has some furniture on it. Instead of hiring
someone to paint it for me, I decided to do it myself. So I went out the local paint store, Antonio’s
Colourful Masterpieces, and asked for some paint. The man behind the counter asked me if I would like
to try some experimental paint. Curious as to what could be experimental about paint, I said, “Yes!” I
then purchased 1 000 paint cans and went home (it was on a very good sale).

When I got home, I opened the instruction manual for the paint and was extremely surprised:

“When you pour the whole can of paint onto the ground, it will fill in the 1× 1 block of floor
it is in and then will expand out and fill every square that is in the same row or same column
as the original 1× 1 block so long as there is not an obstacle in the way.”

For example, in the left room, the paint is poured in the third row and second column and it fills in
coloured squares. In the right room, the paint is poured in the same square, but it only goes until it hits
the black obstacle (piece of furniture).

You may not pour paint onto any of the furniture (obviously!). The goal is to paint every square in the
room that is not furniture. Painted squares do not become obstacles for future pours of paint and it is
okay to paint squares multiple times.

For small rooms, I can easily figure out how to paint the rooms with this experimental paint, but for
large rooms, I’m worried that I will run out of paint before I finish the floor! Can you tell me where to
pour the paint? You do not need to give me an optimal solution, but you must give me a solution that
uses no more than the 1 000 paint cans that I purchased. It is guaranteed that 1 000 paint cans are
enough to paint the floor.

Input

The input contains one test case.

The first line will contain two integers m and n (1 ≤ m,n ≤ 500) being the dimensions of my room in
metres. The next m lines will contain n characters each. These lines will show the layout of my room.
The map of the rooms will only contain the characters ‘.’ and ‘x’. An ‘x’ denotes an obstacle in the
room and a ‘.’ denotes no obstacle. There will be at most 500 x’s in the input.

Problem J: Page 1 of 2

Central Division Programming Contest August 22, 2015

Output

The output will consist of several lines. In each line, output two integers: the row and the column of
where to pour the ith can of paint. The rows and columns are 1-based from the top-left corner. The
number of lines of output must be no more than 1 000. The lines need not be in any particular order.
Any valid output will be considered correct.

Sample Input and Output

Sample Input 1 Output for Sample Input

5 5

.....

.....

.....

.....

.....

1 1

2 2

3 3

4 4

5 5

Sample Input 2 Output for Sample Input

7 7

.......

.xxxxx.

.xx.xx.

.x...x.

.xx.xx.

.xxxxx.

.......

1 1

4 4

7 7

Problem J: Page 2 of 2

Central Division Programming Contest August 22, 2015

20152015201520152015201520152015201520152015201520152015201520152015
SOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGIONSOUTH PACIFIC REGION

K: Folding Code

Time Limit: 1 second(s)

Members of the Paperless University programming contest team were used to doing all their work
digitally. Imagine their surprise at the end of a programming contest when the organisers asked them to
fill in an evaluation form on paper!!! What were they to do? Of course they didn’t carry pens or pencils,
and circumstances were such that borrowing was not an option. They did wish to submit evaluations.
Fortunately, the evaluation form was multi-choice, so all they needed to do was to indicate their preferred
option for each question. The team worked out a way of ‘filling’ in the form.

To answer a question they folded over one of the corners of the page to put it in the preferred answer
square and creased the paper along the (straight) fold line. Choice of corner was arbitrary. After
answering a question the paper was flattened again. The process was repeated for each answer they
wished to ‘tick’. The result was a sheet of paper with one fold line for each answer the coder chose to
provide.

Reading back the code was easy - make each fold and see where it pointed. Except ... the organisers
of the programming contest were digital enthusiasts too. Their process was to scan and destroy all
evaluation forms, then analyse the scans. Luckily the scanned forms showed shadows on the fold lines.
The organisers wrote a program that allowed an operator to note the points at which fold lines intersected
the edge of the paper.

Your task, given a list of fold line intersection points and information about the locations and sizes
of question answer options, is to complete the decoding of the evaluation forms. Here is an example
evaluation form. In the right image the top right corner has been folded over to provide the answer
“Perfect” to the first question.

Input

The input contains a single test case.

The first line of input has four integers: W, H (100 ≤ W,H ≤ 1 000), Q (0 < Q ≤ 10) and F (0 < F ≤

100): the width and height of the form in mm; the number of questions on the form; and the number of
folds to decode, respectively.

This is followed by Q question descriptions. The first line of each question description has 5 integers,
A, x, y, w and h, followed by the text of the question. A is is the number of answers to the question
(0 < A ≤ 10). The four values x, y, w and h are the coordinates of the top left corner and the width
and height of an enclosing rectangle for the question text (0 < x+ w < W) and (0 < y + h < H).

Problem K: Page 1 of 2

Central Division Programming Contest August 22, 2015

The next A lines hold answer descriptions. Each has 8 integers x1, y1, w1 and h1 defining an enclosing
rectangle for the answer text and x2, y2, w2 and h2 defining the rectangle that is the ‘tick’ box; followed
by the text of the answer. (x1, y1) and (x2, y2) are the top-left corner of the respective rectangles and
w1, w2, h1 and h2 are the widths and heights of the two rectangles. All rectangles will have positive
area and will fit within the dimensions of the page. No rectangles can overlap each other but they may
touch. All question and answer strings are non-empty.

After the text descriptions are F lines, each describing one fold in the form. The lines each hold 4
integers: x1, y1, x2, y2 being the x− and y−coordinates of the points at which a fold meets an edge of
the paper. All input items are single space separated on their lines.

Fold lines are always between adjacent edges – they will not pass through a corner – and the corner
between is the pointer. Each box will be ticked by at most one fold. The number of folds, F , will be
less than or equal to the total number of answer boxes.

The coordinate system for the form is in millimetres; (0, 0) is the top left corner; (w, h) is the bottom
right corner. Intersection points with an edge will have one coordinate that is exactly 0 (top or left),
w (right) or h (bottom). The length of text in a question or answer is never more than 100 characters.
You may assume all folds to be valid i.e.: they point into a tick box - and point cleanly inside the box
(by at least 0.1mm).

Output

The output for each form should consist of one line per question. For each question the line should be
the question text followed by a colon, a space and then a list of semicolon and space separated answers
to that question. The answers should be listed in the order given in input. For some questions there
may be no answer. For some questions there may be more than one answer.

Sample Input and Output

Sample Input

210 150 3 3

4 9 19 121 10 Rate your contest experience

9 29 33 10 43 29 10 10 Terrible

57 29 32 10 90 29 10 10 Neutral

104 29 16 10 121 29 10 10 OK

135 29 31 10 167 29 10 10 Perfect

4 9 49 150 10 How hard did you find the problems?

9 59 42 10 52 59 10 10 Very hard

66 59 22 10 89 59 10 10 Hard

103 59 23 10 127 59 10 10 Easy

141 59 27 10 169 59 10 10 Trivial

5 9 109 182 10 Which programming languages did you use?

9 119 22 10 32 119 10 10 Java

46 119 9 10 56 119 10 10 C

70 119 20 10 91 119 10 10 C++

105 119 31 10 137 119 10 10 Python

151 119 14 10 166 119 10 10 C#

0 50 35 0

210 105 180 150

0 113 27 150

Output for Sample Input

Rate your contest experience: Terrible

How hard did you find the problems?:

Which programming languages did you use?: Java; C#

Problem K: Page 2 of 2

